PUBLICATIONS

Discover our collection of scientific publications, where cutting-edge research meets real-world impact. Our team contributes to the global scientific community, advancing knowledge on environmental, technological, and societal challenges. Explore our latest findings, peer-reviewed articles, and studies that drive innovation and inspire solutions for a sustainable future. Stay informed with the developments that define our commitment to excellence in research.

Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns

by Salah Basem Ajjur, Sami G. Al-Ghamdi
Journal Article Year: 2021 DOI: 10.3390/w13050667

Abstract

The seasonal precipitation (SP) trend and its sensitivity to teleconnection patterns over the East Mediterranean (EM) region remain inconsistent. Based on rainfall records during 1974–2016 at seven meteorological stations in the Gaza region, this study aims to (1) analyze the observed SP trend over the Gaza region, and (2) examine the SP sensitivity to climate indices. Pearson and Spearman correlations between climate indices and SP in the current and following years were calculated, and the seasonal period (particular month) with the highest correlation was identified. Results show that the climate indices, with greater impact on SP over the Gaza region in the autumn and spring, were in the order; El Niño-Southern Oscillation (ENSO) > East Atlantic/Western Russia (EAWR) > North Atlantic Oscillation (NAO) > Arctic Oscillation (AO). The indices’ impact was minimal in the winter precipitation. ENSO types’ correlations (Southern Oscillation Index-SOI and Niño 3.4) were moderate and significant at α = 0.05. Rainfall at most stations positively correlates with AO and EAWR in spring and autumn. During the study period, warm phases of ENSO (i.e., El Niño) intensified autumn precipitation. Simultaneously with warm phases of EAWR or AO, more influence on autumn precipitation is exerted. Cold phases of ENSO (i.e., La Niña) have an adverse impact compared to El Niño. EAWR co-variation was evident only with the ENSO. Regarding AO, a non-meaningful action was noticed during the neutral phases of ENSO and EAWR. The findings of this study help understand and predict the seasonal trend of precipitation over the Gaza region. This is essential to set up climate change mitigation and adaptation strategies in the EM region.

Keywords

Climate change Seasonal precipitation NAO ENSO AO EAWR East Mediterranean