PUBLICATIONS

Discover our collection of scientific publications, where cutting-edge research meets real-world impact. Our team contributes to the global scientific community, advancing knowledge on environmental, technological, and societal challenges. Explore our latest findings, peer-reviewed articles, and studies that drive innovation and inspire solutions for a sustainable future. Stay informed with the developments that define our commitment to excellence in research.

CFD analysis of evaporation heat transfer for falling films application

by Furqan Tahir, Sami G. Al-Ghamdi
Conference Year: 2022 DOI: 10.1016/j.egyr.2021.11.096

Abstract

Multi-effect desalination (MED) uses less energy and has a smaller footprint than other thermal desalination systems. The MED plant consists of cascaded horizontal-tube falling film exchangers (HFFE), offering improved heat transfer at lower liquid loads. The MED plant’s current working temperature range is 40 °C–65 °C, for which 6–8 HFFE can be used. However, this limit can be extended to 5 °C–85 °C by using new antiscalants and an adsorption vapor compression system. Thus, more HFFE can provide enhanced water production. Furthermore, the heat transfer studies for this range are limited. Therefore, this work presents a 2-D computational fluid dynamics (CFD) model in Ansys fluent v19.0 to examine the film thickness, the temperature distribution, and the heat transfer coefficient for working temperatures of 5 °C, 65 °C, and 85 °C at various liquid loads. It is found that the heat transfer is improved at higher temperatures and liquid loads by 21 %–37 %, which indicates lower energy requirements and better distillate productivity.

Keywords

CFD Desalination Evaporation Falling film Heat transfer coefficient Horizontal tube